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Strong Gravity, GRStrong Gravity, GR……

λ Where does GR “break”?
– All expected failure points are in extreme regimes

(Planck scales around a “spacetime singularity”; or on
length scale of any compactified extra dimensions)

λ We should not expect to find deviations from
General Relativity around our black holes
– Require fundamental modifications to the foundations

of the theory to obtain any relevant deviation from GR
– See the “Six Ways to Axiomatize Einstein’s Theory” in

MTWs Gravitation
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…… and black hole astrophysics and black hole astrophysics
λ So, I’ll assume GR is correct
λ Will focus on observing

physics in the strong field
background
– Relativistic dynamics of matter

& energy close to BHs
– Astrophysics of BH spin
– Physics of the most powerful

sources in the Universe
– Along the way… verify or

falsify predictions of GR

λ We must let ourselves get
excited about this (not
apologize for it!)
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Probing Strong Gravity withProbing Strong Gravity with
gravitational wavesgravitational waves

λ As advertised, GWs provide clean, robust, and precise tests
of GR

λ Merging of supermassive black holes
– Compare inspiral & ringdown signals with calculations
– Direct test of “Area Theorem” of GR (few “Golden Binaries” per

year; Hughes & Menou 2004)

λ Extreme mass ratio inspirals (small BH into SMBH)
– Can follow 105 orbits of the inspiral of “test mass” into a SMBH

(albeit over a restricted mass range)
– Direct test of Kerr metric and the “No-hair Theorem”
– Expect ~1000 detectable events per year
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Black Hole SpinBlack Hole Spin
λ Astrophysical importance of spin

– Spin alters structure of inner (energetically dominant)
region of accretion disk

– Spin is potentially a powerful energy source (for disk,
jets, other particle acceleration)

– May well be an important parameter in determining
basic nature of many BH-powered astrophysical
sources (GBHCs, AGN, GRBs)

λ Fundamental physics
– Observing strong frame-dragging effects ⇒ important

verification of GR
– Observing magnetic-extraction of BH spin energy ⇒

important verification of GRMHD
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GX339-4

Miller et al. (2004)
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Case study: BH spin in MCG-6-30-15Case study: BH spin in MCG-6-30-15
λ Fe line has extreme red-

wing… high spin??
λ Dovciak et al. (2004)

argue that line profile
cannot be used to
determine BH spin
– True only if one takes no

account of whether
emission distribution is
physically reasonable

λ Low spin models need
most emission to be deep
within the innermost
stable circular orbit (CSR
& Begelman 1997) Dovciak, Karas & Yaqoob (2004)
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Spin of MCG-6-30-15 (cont)Spin of MCG-6-30-15 (cont)
λ Assume Schwarzschild hole ⇒ significant line

emission from ring at 3rg (i.e., half coordinate
radius of ISCO; CSR unpub.)
– Extremely hard to reconcile with physics of the

accretion flow… flow should be fully ionized inside of
4.5-5rg (due to falling density)

λ Assume no line emission from within ISCO ⇒
a>0.93 (Brenneman & CSR, in prep.)

λ Bottom line: Current data are definitely probing
effects related to BH spin, but conclusions depend
on accretion disk physics
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““Accretion disk physicsAccretion disk physics”” isn isn’’tt
the black box it used to be!the black box it used to be!

λ Rapid development of BH
accretion disk theory
– 1991: Balbus & Hawley

realized importance of MRI
and MHD turbulence for
driving accretion

– 1995-1996: Local 3D
simulations

– 1998-2000: Global 3D
simulations

– 2002-2003: Global
GRMHD simulations

Hawley & Krolik (2000)
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Within the ISCOWithin the ISCO

λ Excellent prospect for
detailed theoretical
investigation of region
within ISCO in near future

λ Have already uncovered
some surprises…
– Material within ISCO may

not plunge ballistically…
– Magnetic connections can

lead to energy/ang-mtm
extraction as it plunges

λ Radiative/ionization
properties can soon be
examined.
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Fit with a Novikov & Thorne disk
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Inconsistent with standard disk models ofInconsistent with standard disk models of
NovikovNovikov, Page & Thorne (NPT), Page & Thorne (NPT)……
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Additional Additional torquing torquing from thefrom the
region within the ISCO?region within the ISCO?
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Fit with a Novikov & Thorne disk
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Fit with an Agol & Krolik “infinite-efficiency” disk
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Big goals for a next generationBig goals for a next generation
X-ray observatoryX-ray observatory

λ I’ll focus on spectral work…
λ Detailed physics of BH accretion; studies of bright AGN

– Rapid spectral variability of X-ray continuum (physics and
geometry of disk, corona and/or jet)

– Dynamical timescale iron line variability (geometry, disk
turbulence + orbit of matter around BH)

– Light-crossing timescale iron line variability (geometry + orbit of
photons around BH)

– Calibration of lower-fidelity diagnostics (time-averaged line
profiles, continuum shapes etc.) for mass, spin and accretion rate

λ BHs in the Universe; large samples of objects
– Demographics of BH mass, spin and accretion rate in GBHC,

AGN and ULXs from time-averaged iron lines
– Astrophysics of spin, spin extraction and constraints on BH formation
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Specific strategies I : DetailedSpecific strategies I : Detailed
exploration of disk physics & gravityexploration of disk physics & gravity

λ Special status of bright AGN
– Highest photon flux per light-crossing time
– Best sources to study detailed sub-orbital behaviour

λ Dynamical timescale variability of iron line and continuum
radiation
– Can trace orbits of inhomogeneities in the flow
– Direct probe of disk turbulence and motion of matter through

spacetime

λ Relativistic reverberation of X-ray flares from the inner
accretion disk
– Watch X-ray flash echo through system
– Direct probe of source geometry an motion of photons through

spacetime
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Specific strategies I : DetailedSpecific strategies I : Detailed
exploration of disk physics & gravityexploration of disk physics & gravity

λ Special status of bright AGN
– Highest photon flux per light-crossing time
– Best sources to study detailed sub-orbital behaviour

λ Dynamical timescale variability of iron line and
continuum radiation
– Can trace orbits of inhomogeneities in the flow
– Direct probe of disk turbulence and motion of matter through

spacetime

λ Relativistic reverberation of X-ray flares from the inner
accretion disk
– Watch X-ray flash echo through system
– Direct probe of source geometry an motion of photons through

spacetime
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Armitage & CSR (2003)
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Iwasawa, 
Miniutti &
Fabian (2004)

NGC4593
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Can fit line maxima by three Keplerian orbits
with same inclination & central mass !!

χ2=21,  15 d.o.f.
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Specific strategies I : DetailedSpecific strategies I : Detailed
exploration of disk physics & gravityexploration of disk physics & gravity

λ Special status of bright AGN
– Highest photon flux per light-crossing time
– Best sources to study detailed sub-orbital behaviour

λ Dynamical timescale variability of iron line and continuum
radiation
– Can trace orbits of inhomogeneities in the flow
– Direct probe of disk turbulence and motion of matter through

spacetime

λ Relativistic reverberation of X-ray flares from the
inner accretion disk
– Watch X-ray flash echo through system
– Direct probe of source geometry an motion of photons through

spacetime
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27Reynolds et al. (1999)
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Constellation-X simulations for bright AGN source with M=108Msun
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3σ Detection time for a
redshifted Fe line with
EW=100eV, ΔE/E=0.05.
F2-10keV=5×10-11, Γ=1.8

Con-X

3×Con-X

10×Con-X
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The need for high-spectralThe need for high-spectral
resolutionresolution

λ Lesson from XMM… high-S/N but moderate-
resolution spectra have degenerate
interpretations

λ Need to be able to unambiguously separate out
any “foreground” emission and absorption and
study the inner disk

λ Astro-E2 will demonstrate whether or not we need
high spectral-resolution for disk studies
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MCG-6-30-15 512ks Chandra HETG; WA fit to broad line
Young et al. (2005)
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ObservingObserving  Strategies II :Strategies II :
Large samples ofLarge samples of  BH sourcesBH sources

λ Use bright AGN to calibrate lower-fidelity
spectral probes
– E.g., time-averaged broad line profiles and continuum

spectra as function of mass, spin, accretion rate

λ Large samples of AGN, GBHC and ULX/IMBH
spectra
– Demographics of BH mass, spin, accretion rate
– ONLY way to probe spin in IMBHs and the most

massive SMBH (outside of accessible frequency range
for all gravitational wave experiments).
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Lockman Lockman HoleHole
800 ks 800 ks XMM-Newton observationXMM-Newton observationHasinger 

Streblyanskaya et al 2004
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Summary and ConclusionSummary and Conclusion

λ Strong gravity and spectroscopy
– Light-crossing timescale broad line variability

– Dynamical timescale broad line variability

– Relativistic effects in samples of GBHCs,
ULXs and AGN

λ Observatory specifications
– Effective area; A>4m2@4keV, 2m2@6keV
– Spectral resolution; E/ΔE>1000
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Courtesy of J.Schnittman
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Courtesy of J.Schnittman


